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Monte Carlo (Importance) Sampling within a Benders'

Decomposition Algorithm for Stochastic Linear Programs

Gerd Infanger

Stanford University

Abstract

A method employing decomposition techniques and Monte
Carlo sampling (importance sampling) to solve stochastic
linear programs is described and applied to capacity
expansion planning problems of electric utilities. We
consider uncertain availability of generators and
transmission lines and uncertain demand. Numerical
results are presented.
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Introduction

A stochastic linear program is a linear program whose

parameters (coefficients, right hand sides) are uncertain. The

uncertain parameters are assumed to be known only by their

distributions. That means that the values of some functions are

numerical charactcristics of random phenomena, e.g. mathematical

expectations of functions dependent on decision variables and

random parameters (Kall. et. al. 1988).

Suppose a function z = E C(V) is an expectation of a

function C(V 6 ), 6 C 2. V is a random parameter which has

outcomes V6 . 0 is the set of all possible random events. It can

be finite, infinite, discrete or continuous. In the continuous

case the computation of the expected value requirc5 to sclve the

integral:

E C(V) =J C(VS)P(df)

with P being the probability measure.

In a general case V would consist of several components,

e.g. V = (V1. .. . ..,Vh) with outcomes V6 whi- we also will denote

by lower case letters, e.g. v = (vl ..... . and p(V 6 ) alias

p(v) would denote the corresponding density function. In this

case the above mentioned integral takes the form of a multiple

integral:

(V). =j JC(v)p(v)dv ...... dvh

In the case of 2 being discrete and finite the expectation

can be computed h , - -...
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E C(V) = ... Z C(v)p(v)
V 1 V h

The main difficulties in stochastic linear programming deal

with the evaluation of the multiple integral or the multiple sum.

The numerical computation of the expectation requires a large

number of function evaluations and each function evaluation means

a linear program to be solved. Different approaches attack this

problem, e.g. Birge and Wallace (1988), Kall et. al. (1988),

Rockafellar and Wets (1989) and others. We follow the concept of

Dantzig et. al. (1989).

Two Stage Stochastic Linear Program

An important class of models concerns dynamic linear

programs. Activities initiated at time t have coefficients at

time t and t+l. Deterministic dynamic linear programs appear as

staircase problems. The simplest staircase problem is that with

two stages: X denotes the first, Y the second stage decision

variables, A, b represent the coefficients and right hand sides

of the first stage constraints and D, d concern the second period

constraints together with B which couples the two periods. c, f

are the objective function coefficients.

In the deterministic case c, f, A, b, B, D ,d are known with

certainty to the planner. In the stochastic case, the parameters

of the second stage are not known to the planner at time t=l, but

will be known at time t=2. At time t=l only the distribution of

these parameters are assumed to be known. The second stage

parameters can be seen as random varidbles which get certain

outcomes with certain probabilities. We denote a certain outcome

of these parameters with 6 and the corresponding probability with

p(&), r- ,the set of possible outcomes.
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min z = cX + E
6 (fY6)

s/t AX =b (1)

B 6X + DY 6 = d 6

X,Y 6  > 0, 6 E n

In (1) a two stage staircase problem is transformed into a

two stage stochastic linear program and the parameters d
6 and D&

being random variables. Given the two stage stochastic linear

program one wants to make a decision X which is fpasible for all

scenarios and has the minimum expected costs.

We consider the case of 0 being discrete and finite, e.g. 0

- (1,...,K), the parameter 6 takes on K values. Then we can

formulate an equivalent deterministic problem to the stochastic

linear problem. This is tractable if K is small. For K=3 the

deterministic equivalent problem is given in (2).

min z = cX + plfyl+ p
2 fy2+ p3 fy3

s/t AX = b (2)

BIx + DY1  = dl

B2 X + DY 2  = d2

B3 X + DY3  = d3

X, Yl, Y2, Y3 > 0

Two stage stochastic linear programs were first studied in

Dantzig (1955) and then developed by many authors. The method

which we want to apply here is using Benders (1962)

decomposition. Van Slyke and Wets (1969) suggested to express the

impact of the second period by a scalar E and "cuts", which are

necessary conditions to the problem and are expressed only in

terms of the lirst period variables X and E. Benders

decomposition splits the original problem into a master problem
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and a subproblem which decomposes into a series of independent

subproblems, one according to each 6 E il. The master problem, the

sub problems and the clots are represented in (3), (4) and (5).

The master problem:

min zM = cX + e

s/t AX = b (3)

G1 X + ce = gl, 1 =

X, E) > 0

The sub problems:

min ZS 6 = p 6 fY 6  (4)

s/t p6 r6 : DY6  -d 6 + B6X

y6 > 0, 6 c Q, e.g. fl = (1,2,3)

where p67 6 is the optimal dual solution of subproblem 6.

The cuts:

g = Z6 p 87 6d 6 = E(r 6d 6 ) (5)

G = Z6 p6F6B6 = E(Ir6 B 6 )

a = 0 ... feasibility cut
a = 1 ... optimality cut

Solving the master problem we obtain a solution X. Given X

we can solve K subproblems 6 e n to compute a cut. The cut is a

lower bound on the expected value of the second stage costs

represented as a function of X. Cuts are sequentially added to
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the master problem and new values of X are obtained until the

optimality criterion is met. We distinguish between two types of

cuts, feasibility cuts and optimality cuts. The first refers to

infeasible subproblems for a given X and the latter to feasible

and optimum subproblems, given X.

If the expected values z, G, and g are computed exactly,

that iE., by evaluating all scenarios 6 e 2, we refer to it as the

universe case. As we will see later the number of scenarios

easily gets out of hand and it is not always possible to solve

the universe case. Therefore methods are sought which guarantee a

satisfying solution without solving the universe case. Employing

Monte Carlo methods seems to be a promising approach.

Monte Carlo Sampling

Each iteration of Benders' decomposition requires the

computation of expected values ,e.g. the subproblem costs, the

coefficients and right hand sides of the cuts. For each outcome S

- 2 a linear program has to be solved. The expected value of e.g.

the subproblem costs is denoted by

zS = E C(V 6 ) = E fY6  , 6 6 12.

The number of elements of n is determined by the

dimensionality of the stochastic vector V = (Vl,...,Vh).

Typically the dimension h of V is quite large. E.g. in expansion

planning problems of electric power systems a component of V

denotes the availability of a type of generators or a demand of

power in a node of a multi area supply network or the

availability of a type of transmission line connecting two nodes.

Consider several nodes and arcs and one demand and some options

of generators in each node. The number of scenarios K in the

universe case gets quickly out of hand, even if the distribution

of each component of V is determined by just a small number Ki of
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discrete points. Suppose e.g. h = 20 and Ki = 5. Then the total

number of terms in the expected value calculations is K = 520

1012, which is not practically solvable by direct summation

(Glynn in Dantzig et al. (1989)). Monte Carlo methods are

recommended tQ compute multiple integrals or multiple sums for h

large (Davis and Rabinowitz (1984)). See Hammersly and Handscomb

(1964) for a description of Monte Carlo sampling techniques.

Crude Monte Carlo

Suppose V6 , 6 = 1,...,n are scenarios, sampled independently

from their joint probability mass function, then C6 = C(V6 ) are

independent random variates with expectation z. (The subscript S

is suppressed now as there is no danger of confusion.)

n
z = (1/n) E C 6  (6)

5=1

is an unbiased estimator of z and its variance

a2 C o2/n

C2 =var(C(V)).

Thus the standard error is decreasing with sample size n by

n- 0 .5 The convergence rate of z to z is independent of the

dimension h of the random vector V.
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Importance Sampling

We rewrite

z = Ev c(v)p(v) = Ev c(v)p(v)q(v)/q(v)

by introducing a probability mass function q(v). We can see

q as a probability mass function of a random vector W, therefore

z = E C(W)p(W)/q(W)

and we obtain a new estimator

n
z = (1/n) Z C(W6 )p(W5 )/q(W6 )

6=1

which has a variance of

var(z) = (1/n) Zw(C(w)p(w)/q(w) - z) 2 q(w)

Choosing q*(w) = C(w)p(w)/(Zw C(w)p(w)) would lead to var(z)

= 0, that means we could get a perfect estimate of the multiple

sum just by one single observation. However this is practically

useless, since to sample C.p/q we have to know q and to determine

q we need to know z = Ew c(w)p(w), which we eventually want to

compute. Nevertheless this result helps to derive some heuristics

of how to choose q: It should be approximately proportional to

the product C(w)p(w) and have a form which can be integrated
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theoretically. For the theory of importance samplinG we refer to

Glynn and Iglehart (1988) and Dantzig and Glynn (1989a).

P.Glynn and M.Nakayama in Dantzig et. al. (1989) developed

an importance sampling scheme using an additive model to

approximate the cost ful-,ction E C(V):

h
C(v) = E Ci(vi).

i=l

Actually C(v) is achieved by a marginal cost model,

considering marginal costs in each dimension i of V.

h
C(v) = C(T) + E Mi(vi) (7)

i=l

Mi(vi) = C(Tl,..,Ti lVi,i+l,..,rd) - C(T)

T = (rl,...,Th) can be any arbitrary chosen point out of the

set of values vi, i = l,..,h. For example we choose ri that

outcome of Vi which leads to the respectively lowest costs. In

the context of expansion planning of power systems this means

selecting respectively lowest demands and highest availabilities

of generators and transmission lines.

Defining

Mi =  E Mi(Vi) (8)

and
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h
F(v) = ((C(v) - C(r))/ Z Mi(vi) (9)

i=1

we can express the expected value of the costs in the

following form, e.g. in the case of h = 3:

z = C(T) + Wi 1v F(v) ,P l (vl)Ml(vl)/Ml)P 2 (v 2 )P 3 (v 3 )

+ M2 v F(v) Pl(vl)(P 2 (v 2 )M2 (v 2 )/M 2 )P 3 (v3)

+ M3 Ev F(v) P l (vl)P2 (v 2 )(P 3 (v 3 )M3 (v 3 )/M 3 )

(10)

Note that this formulation consists of a constant term and h

expectations. Given a fixed sample size n we partition n into ni,

i = l,..h sub-samples , such that Z n i = n and n i  1, i

1,...,n and ni being approximately proportional to Mi . The h

expectations are separately approximated by sampling using

marginal densities. The i-th expectation corresponds of course to

the i-th component of V. Generating sample points in the i-th

expectation we use the importance density (piMi/Mi) for sampling

the i-th component of V and the original densities for any other

components. Denoting

n.Ai = (i/ni) Z F(vj) (11)

j=l

the estimate of the i-th sum, we obtain
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z = C(r) + Z (12)

i=1

the expected value of the second stage costs C(V).

Let ai 2 be the sample variance of the i-th expectation,where

Gi2 =0 if ni = 1. The variance of the mean is then given by

h
_i Z Mi 2ai n i  (13)

i=l

Using importance sampling one can achieve significant

variance reduction. The experiment of M. Nakayama in Dantzig et

al. (1989) claims a variance reduction of 1:20000 using

importance sampling versus crude Monte Carlo sampling: For a

given and optimal X the second stage costs of a multi area

expansion planning model with 192 universe scenarios were sampled

with a sample size of 10 using both methods and the results

compared.

The derivation above concerned the expected second stage

costs z. To derive a cut we use the same framework analogously.

Note that a cut is defined as an outer linearization of the

second stage 2osts represented as a function of X, the first

stage variable-. At X, the value of the cut is exactly the

expected sec,- stage costs z. Therefore we can employ directly

the cost app,_ -mation scheme and the importance distribution to

compute the par-. ers of a cut. We define
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h
FG(v) = ((irB) (v) - (wB) ())/ Z Mi(vi) (14)

i=1

h
Fg(v) = ((7d) (v) - (7rd) (r))/ , Mi(vi) (15)

i=1

and get e.g. in the case of h = 3

G = (irB)(r) + 1v FO(v) (P l (vl)Ml(vl)/M1 )P 2 (v 2 )P 3 (v 3 )

+ M2 Ev F (v) Pl(Vl)(P 2 (v 2 )M 2 (v 2 )/M 2 )P 3 (v3)

+ M3 Ev FG (v) P l (vl)P2 (v 2 )(P 3 (v 3 )M3 (v 3 )/M 3 )
(16)

g = (ird)(r) + F Ev Fg(v) (PI(Vl)MI(VI)/MI)P2(v2)P3(V3)

+ M2 Ev Fg(v) PI(vl ) (P 2 (v 2 )M2 (v 2 )/M 2 )P 3 (v 3 )

+ M3 Ev Fg(v) PI(vl)P 2 (v 2 )(P 3 (v 3 )M3 (v3)/M 3 )

(17)

the coefficients and the right hand side of a cut. We

compute the expected values again by sampling using the same

sample points as at hand from the computation of z.

Using Monte Carlo sampling we obtain i (a-), G, g, which are

approximations of the expected values z = E c(V), G = E (7B)(V),

g = E (ird) (V). The impact of using approximations instead of the

exact parameters on the Benders decomposition algorithm is

analyzed in the following section.
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Benders' Decomposition

In the following we will derive the main steps of Benders

decouwpsition algorithm for two stage stochastic linear programs

considering the "universe" case, which gives the exact solution

of the equivalent deterministic problem ("certainty equivalent").

We will then analyze the impact of sampling of subproblems on

Benders decomposition. See Geoffrion (1970) for a derivation of

Benders decomposition algorithm.

Given the equivalent deterministic problem in (2) and

assuming that K = 3 describes the universe case, we rewrite the

problem applying projection onto the X variables and obtain (18).

We assume for simplicity that (2) is feasible and has a finite

optimum solution.

min z =

cX + Inf[plfyl+ p2 fy 2 + p3 fy 3] (18)
AX =b DY 1  = d I + BIx
X 0 DY 2  =d 2 + B2 X

DY 3 = d 3 + B 3 X
yl, y2, y3 > 0

The infimal value function in (18) corresponds to the

following primal linear problem (19):

min zp = plfyl + p 2 fY2 + p3 fy3 = Es(fY6) (19)

p1TI: DY1  = dI + B1 X

p272: DY2  = d2 + B2X

p3V3: DY 3 = d3 + B 3X

yl, y2 , y 3 > 0

and to the dual linear problem (20):
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max zD  (20)

Plir1 (dl+BiX) + p 2 r2 (d2 +B 2 X) + p 3ir3 (d3+B 3X)

7rID  = f

72 D = f

7r3 D  = f

7I, 72, 73 > 0

The primal problem is parameterized in the right hand side

by X. The assumption (2) being finite implies that (19) is finite

for at least one value of X. Applying the Duality Theorem of

Linear Programming we state that (20) has to be feasible. The

feasibility conditions

7 6 D - f = 0

indicate that the feasible region { 6 176D - f : 0) is

independent of X and just repeated for each scenario 6 E f2.

The assumption (2) being feasible requires feasibility of

the primal problem (19) for at least one X. By the Duality

Theorem again (20) has to be finite. Let 70, j=l,...,p be the

extreme points and J, j=p+l,...,p+q be representatives of the

extreme rays of the feasible region of (9). Problem (20) is

finite if and only if

rj(d4 + B6 X) S 0, j = p+l ..... ,p+q (21)

6 n

We append constraints (21) to problem (18) to ensure that

the problem is bounded.
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We call

ZD Max p67j6(d6+B6 X) = ZD 6 ( (* (22)

the optimum second stage costs for given X in scenario 6.
76* denotes the optimum dual variables for scenario 6 selected

from the set ij , j=l,..,p. It is clear that

ZD = Z zD 6  (23)
6en

Let r i, 2* 3 be the vector of optimum dual variables of

the second stage problem, given X, we outer linearize the infimal

value function in (18). By the dual problem (19) we obtain:

zD* = pll*(dl+BiX) + p27 2 *(d2+B 2X) + p37 3 *(d 3+B 3 X)

(24)

and

zD(rl*, 2 *, 3*,X) > zD(7l*,72* , 73*,X) (25)

formulates the main property of the outer linearization.

This property enables us to rewrite problem (18) by expressing

the infimal value function by the outer linearized dual problem.
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min z = cX + zD(x) (26)
AX b

X 0

zD(x) =

Max pl 1 (d'+BiX) + p 2 j7r2 (d2+B 2 X) + p 3rj 3 (d3 +B 3X)
lfjsp,

Using 8 as the greatest lower bound the problem can be

represented in the following form:

min z = cX + a (27)
AX b
X 0

E p1 7rj 1 (dl+BiX) + p2vj 2 (d2+B 2 X) + p37rj 3 (d3+B 3X)

j=i. ..... p

j (dS + B6X) : 0, j = p-, ...... ,p+q

Relaxation is applied to solve problem (12).

To test a solution (X, 0) one solves problem (19) or problem

(20), actually by solving
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zS6* = min Zp 6 = fY6  (28)

s/t 7r6 : DY6 -d 6 + B6X

Y 0, 6 R

or by solving

ZS6* = max ZD6 = 7r6(d 6+B 6X) (29)

V6 D  f

V
6  > 0, 6

If primal infeasibility or dual unboundness is detected, a

feasibility cut

iT6 (d6  + B6 X) 0 (30)

is added to the master problem. If all primal problems are

feasible or all dual problems unbounded an optimality cut

E Z p 6iV6 (d6+B 6X) (31)
6EIn

is added to the master problem.

In the l-th iteration

Li = zMl* = cX I* + e1* (32)

is defined to be a lower bound and



18

1 mi 1z-1 c I  * 0
= minz , cX + zS z (33)

to be an upper bound to the solution of the problem. If

(2 - z)/z : TOL,

where TOL is a given tolerance, the problem is said to be

solved with a sufficient accuracy.

Probabilistic Cuts

Employing Monte Carlo sampling techniques means not to

solve all problems 6 E n, but solving problems 6 E S, S being a

subset of fi. Instead of the exact expected values zs, G, g we

compute the estimates Z', G, g by weighted sums. Suppose e.g. in

problem (2) S is the set of problems {,2) out of n = {,2,3}.

For example in the case of crude Monte Carlo sampling scenarios 6

c S are sampled according to the probability mass function p6 and

an approximation of the expected value is obtained by computing

the mean of the samples, e.g. zS = (zI + z2 )/2. Referring to (2),

a cut obtained by crude Monte Carlo sampling would be computed as

e (pl/(pl+p 2 ))(dI+B 1 X) + (p2/(pl+p 2 ))(d2+B 2X) o

Suppose e is the approximation of 8, the exact outer

linearization of the second stage costs. The difference E - E

describes the error of the approximation. Comparing the primal

(19) and the dual (20) problem for Q and S we see

e - e(pl + p2) = Zp3*
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The error (0 -9) = Zp 3* - p 39 is constant with respect to X

and affects therefore just the right hand side g of a cut. See

also Dantzig and Glynn (1989b) in this respect. In general S is a

sufficient large subset of 0, 8 is computed by sampling methods

and the error is derived from the variance of the sample mean and

assumed to be small.

Cuts computed by samples do not necessarily meet the

condition of outer linearization (25). Violating this condition a

cut intersects and separates parts of the feasible region of the

second stage problem. A sampled cut is therefore not a valid

cut. The right hand sides of cuts obtained by sampling can be

seen as stochastic parameters. We assume normal distributions

defined by the means gi and the standard deviations a 1 We know

that g = ai, the standard deviation of the second stage costs.

Upper and Lower Bounds

For random right hand sides 91 in Benders' master also the

upper and lower bounds of the problem are probabilistic. The

standard deviation of the upper bound, c 1 is given by c l =a zS1

the standard deviation of the subproblems costs.

To determine the standard deviation of the lower bound

consider the master problem at iteration L:

min zM = cX + E (34)

s/t it0 : AX b

7 1 : GIx += g1 (zl)
7rL: GLx + 8 = gL (z L)

X,e 0,
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where L cuts have been added to the originally relaxed

master problem. The right hand sides are independent stochastic

parameters, assumed normally distributed. We assume independence

as the cuts are generated from independent samples, neglecting

the dependency that Xl, 1 = 1,..,L are weakly connected by the

Benders' algorithm. Under these assumptions we experimentally

obtain a distribution of ZM* by drawing N samples j = 1,..,N from

the normal distributions of gl. Varying the right hand sides
(gl,..gL)j P according to the samples j = 1,..,N and solving

the master problem for each j = 1,..,N we obtain solutions ZM *i

j = 1,..,N, which determine the distribution of the lower bound.

Assuming normal distribution, we compute the variance

N
C2 zM =var(zM*) = (l/N-l) E (zM*i - ZM) 2  (35)

j=l

Solving the master problem N times to obtain an estimate of

the lower bound variance is very expensive. We assume that the

standard deviations azl, 1=1,..,L are small and all solutions
*.

ZM j, j = 1,..,N have the same basis. Then we can compute the

sample points from the dual objective function:

L
E 1 (gl gl) (36)
1=1

N
C 2 ZM = (l/N-l) Z (Aj) 2  (37)

j=1
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or directly:

L
zM i z (38)

1=1

Stopping Rule

The accuracy of the solution is influenced by the accuracy

of the cuts determined by the variances c2 1 and is a function of

the sample size n. Given a fixed sample size n, the Benders

algorithm

has to proceed until the maximum accuracy is achieved.

Operating with probabilistic bounds the maximum accuracy is

reached if the upper and lower bounds are identical in

distribution. See Dantzig and Glynn (1989b) for an appropriate

rule to determine this property. At least no improvement is

possible anymore if the upper and the lower bound intersect.

Employing this rule we thus define

Z- z : 0 (39)

as the stopping criteria.

The Accuracy of the Solution

The accuracy of the solution can be estimated from the

distribution of the lower bound of the problem after the last

iteration. Given zM and azM , in the last iteration, we compute a

confidence interval e.g.
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ZC95 = Z0.95 az

Z0 .9 5 being the 95% quantile of the standard normal

distribution.

If

Zc95/ZM* < TOL, (40)

the obtained solution is satisfying. The quality criterion

TOL is understood here as a confidence interval. Otherwise the

sample size has to be increased and the problem has to be solved

again with the increased sample size.

Improvement of the Solution

Suppose the solution with a certain sample size was not

satisfying. Instead of starting from the beginning with an

increased sample size we want to use the information, which we

have already collected. To do this, we look for the binding cuts

in the final solution, increase the sample size and recompute the

binding cuts at the same Al, they were originally computed. The

enlarged sample size leads to smaller variances a2il of the

binding cuts and eventually to a smaller confidence interval of

the final solution. Solving the master problem again with the

improved binding cuts will in general not result in an

intersection of the lower and upper bound. Therefore some more

iterations are necessary to obtain the optimal solution according

to the increased sample size. This improvement procedure is

employed iteratively until a satisfying solution is obtained. We

can state now the algorithm as follows:



23

The Algorithm

Step 0 Initialize

1 = 0, z0  -

Step 1 Solve the relTxed mister problem and obtain a

lower bond: z cX + e

Step 2 1= 1 + 1
Solve subproblems and obtain an
upper bound: z = min(zll, cX 1 + zS

compute and adA a cut to -he master problem,

using Monte Carlo (importance) sampling.

Step 3 Solve the master pryblem and obtain a

lower bond: z = cX + e1

Step 4 If (2 - z ! 0) go to step 2

Step 5 Compute confidence interval zc95 and obtain a

solution: z, X, 6

Step 6 If (zc95/ZM* < TOL) stop, otherwise go to step 7

Step 7 Increase sample size and

initialize z = %.

Step 8 Recompute binding cuts

Upper bound: Zl = min( 1 -1 , cXl + Zs*),

Step 9 Go to step 3
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Numerical Results

The method has been implemented in an APL environment and

tested on small problems:

The test problem consists of a capacity expansion planning

problem of electric utilities. There are two types of generators

with different investment and operations costs, which can be

built and operated in a way to meet the demand, given by a load

duration curve of three load levels: base, medium and peak load.

Both the availability of power from the generators and the loads

of the three load levels are considered to be uncertain. We

assume a discrete distribution of four outcomes of the first,

five outcomes of the second generator and four outcomes of each

of the demand. The model is formulated as a complete recourse

model, that means we ensure feasibility of the subproblems for

any X. "Unserved demand" can be purchased with costs, higher than

the costs of production (penalty costs). The generators have

intersecting costs functions so that building of both generators

is reasonable. The building of the generators is in competition

with the purchase of load.

The assumptions on the stochastic variables imply 1280

possible outcomes, i.e. 1280 subproblems have to be solved in

each iteration of the Benders decomposition in the universe case.

We compare the universe solution (the test problem is small

enough to solve the universe problem) with solutions gained by

the importance sampling algorithm.

Table 1 shows the results in the case of 20 samples out of

the possible 1280 combinations and without an improvement phase.

100 replications of the same experiment were run to get

statistical information about the accuracy of the solution and

the estimate of the accuracy of the solution.

The mean of the objective function value (total costs)

differs from the universe solution by 0.2%. From the distribution

of the optimum objective function value given by the 100

replications a 95% confidence interval can be computed: plus
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minus 1.5%. A 95% confidence interval of each solution of the 100

replications is estimated. The mean of all confidence intervals

is 1.4%, which is a slight underestimation of the true confidence

interval.This error is caused by the estimation method. The

estimation method however improves in accuracy with decreasing

confidence intervals of the solution. The coverage rate of 92%

expresses that in 92% of the 100 replications the correct answer

of the universe solution is covered by the estimated confidence

interval. This again shows that we are slightly underestimating:

if the computation the 95% confidence interval was exact, we

would expect i coverage rate of 95%.

The bias and the confidence interval of the optimum

strategies (the loads X to be installed) are larger than those of

the optimum objective function value. The optimum seems to be

flat: several different strategies lead close to the optimum

costs. Confidence intervals of 52% and 48% are computed.

In the above example a sample size of 20 samples was chosen.

Additional computational effort is also needed to obtain the

importance distribution, e.g. 17 subproblems have to be solved in

each iteration to obtain the marginal costs Mi . Compared to the

universe solution the method e.g. achieves with 2.9% of

computational effort a solution which is with 95% confidence

within an interval of plus minus 1.5% of the correct answer.

Table 2 represents computational results for an enlarged

model: We consider a triangular network of tree nodes connected

by transmission lines. There is a load in each node and one type

of generator in two of the nodes. The generators in the two nodes

and the transmission lines have to be built to serve the demand.

The generators and the transmission lines respectively differ in

investment and operation costs. We consider two time periods (in

the sense of "Here and Now" decision making, and independent in

the uncertain parameters), dependent in the deterministic part of

the problem. Thus there are 10 decision variables in the first

stage (master) problem. The distributions of the uncertain

parameters are identical to the first test problem. The problem
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is solved with 20 and 40 samples out of 1280 universe scenarios

using importance sampling and the results are compared. The

statistical information is obtained by respectively 30

replications of the same experiment.

One can see decreasing bias, decreasing confidence intervals

and improving estimations of the confidence intervals with

increased sample size. A larger number of binding cuts (e.g.

depending on the number of first stage variables and thus the

problem size) in the final solution implies more error. Therefore

a higher sample size is required to obtain the same accuracy of

the solution, compared to smaller problems.

Table 1: 20 samples

mean 95%conf bias
0 0

correct

#iter 7.9

G1 1800.0 1568.8 52.0 -12.8
G2 1571.4 1793.9 47.7 14.2
theta 13513.7 13922.8 15.9 3.0

obj 24642.3 24682.7 1.5 0.2

est. conf 1.4
coverage 0.92
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Table 2o- 20 samples

mean 95%conf bias

correct

#iter 17 13.8

period 1 G1 2559 1656 116.0 -35.3

G2 5082 5577 26.7 9.7

TI 1369 1860 65.9 35.8

T2 1119 1331 140.2 19.0

T3 0 72 435.2

thetal 13336 16072 29.4 20.5

period2 GI 1889 2352 149.6 24.5

G2 7624 7759 43.3 1.8

TI 2787 2307 77.9 -17.2

T2 1801 1721 71.0 -4.4

T3 0 212 386.5

theta2 28058 26712 29.0 -4.8

obj 99325 101199 3.7 1.9

est. conf 2.4
coverage 0.6
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Table 2b: 40 samples

mean 95%conf bias
0 0

correct

#iter 17 14.7

period 1 G1 2559 1189 58.0 -53.5
G2 5082 5810 17.3 15.7
T1 1369 1744 55.6 27.,
T2 1119 1290 49.1 15.2
T3 0 213 3110.2
thetal 13336 17123 10.7 28.4

period2 G1 1889 1445 102.5 -23.5
G2 7624 8670 17.8 13.7

T1 2787 3102 44.7 11.3

T2 1801 1758 50.8 -2.4
T3 0 226 395.0
theta2 28058 27196 16.8 -3.1

obj 99325 100347 2.3 1.0

est. conf 2.1

coverage 0.7
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